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Abstract

This paper considers a class of production scheduling problems which can
be modeled as network flow problems. The problems are addressed under the
assumption that production occurs in batches. We also require that the cost
function be convex and separable. The model applies for a number of well
known production scheduling problems and will handle multiple products and

multiple facilities.




This paper considers the problem of producing N products on M identical

facilities where each product i is produced in batches of size s We assume

i
that the planning horizon is made up of H equal length production periods
where each facility is capable of producing one batch of any product during

a production period. We also assume that the total cost can be expressed as

I | B
(1) &, €(x )+ C: P K )
pm] w3 It B Dy emy Vo A

, the number of batches of product i
t-1
produced in period t, and qit(-) is a convex function of Z xit’ the total
i=1
number of batches produced before period t. (All that is actually required

where ait(-) is a convex function of X0

is that the piecewise linear approximations over Xy
t-1
) X, =0, 1, 2, ... be convex for all i =1, 2, ..., N and all
j=1
t =

& w 0, 1, 25 o»». 804

1, 2, ..., H.) Under these assumptions, we show that an optimum pro-
duction schedule can be efficiently generated using any of the very efficient

minimum cost flow algorithms.

Special cases of this problem were posed as minimum cost flow problems
by Dorsey, Hodgson, and Ratliff [2] [3]. Their procedure involved posing
the problem as an integer program and then transforming it to a minimum cost
flow problem. The procedure given here is somewhat more general and
hopefully more easily understood. Other special cases were considered
by Elmaghraby and Mallik [5], Elmaghraby, Mallik, and Nuttle [6], and
Elmaghraby and Bawle [4]. Bowman [1] posed a special case of the one
product problem as a transportation problem. Related problems under the

same convex cost and separability assumptions are reviewed by Veinott [7].




The Network Representation

First consider the case where there is only a single product i. This
is represented by the network in Figure 1 for a three period problem. 1If the
cost functions are of the form (I), then the problem of defining a set of

x to minimize (I) can obviously be solved by finding a minimum cost flow

it
from S to T. Since all arc costs are convex, any of the standard minimum

cost flow algorithms will solve the problem (Hu [7]). In fact for some cases (e.g.,
Dorsey, Hodgson, Ratliff [2]) they can be considerably improved by taking

advantage of the network structure. Note that upper and lower bounds on

t-1
the xit or the Z x1j for any t = 1, 2, ..., H can be handled by simply
=1

putting upper and lower bounds on the corresponding arc flows. This
network model is a generalization of the model given by Fulkerson [6].

The model can be extended to include any number of products by
expanding the network as illustrated in Figure 2. Using this model, upper

and lower bounds on the total number of batches produced in a given

period t (i.e., the number of facilities available in t) can be handled
N

by putting upper and lower bounds on the arc corresponding to Z
i=

>
1 it




Figure 1: Network Corresponding to a Single
Product Problem with Three Periods.




Figure 2; Network Corresponding to a Two Product
Problem with Three Periods.




Modeling the Production Scheduling Problem

In spite of its simplicity, a surprising number of production scheduling
problems can be solved using this network model. As an illustration consider
a problem with knewn demands dit for product i in period t and assume that
the demands occur uniformly over the period t. Assume that the production
of product i becomes available as a batch of size S5 at the end of the
period in which it is produced. Assume that the production cost is Pie
per batch for each batch of product i produced in period t. The inventory
carrying cost is Ci¢ Per unit of product per unit time, and the backordering
| cost 1is bit per unit of product per unit time. All costs are assumed to be
nonnegative.

Let Iit denote the inventory level of product i at the beginning of

period t. Since there is generally no reason in most systems for having

at the same time both a positive amount of product i in inventory and a

positive amount on backorder, backorders of product i at the beginning of
period t will correspond to letting Iit be negative. The possible inventory
fluctuation for a single period is illustrated in Figure 3.

It is easily shown that the inventory/backorder cost for product i during
period t as a function of the inventory level at the beginning of the period
1 is

bit[(dit/z) - Iit] for I, <0

2 2
01eTye) = § Cpe(Tye/2d5) + by @y - 1,07 /24, for 0 <1, <d,,

Cyellye = @y /2)] for I, > d,,
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Figure 3: Possible Inventory Fluctuation




is sketched in Figure 4 and is convex.

The function ¢it(1it)

Since the inventory level of product i at the beginning of period t can

t-1 t-1 t-1
be expressed as Iit = Iil + Si,z xij - .Z dij’ we have that, qit( Z xij) =
_]=l ]=1 j-l
t-1 t":l t-1
bie(Tip * 84 ) T dij) is convex in ) I The piecewise linear
j=1 j=1 j=1
tfl t-1
approximation of qit( )i xi.) on Z xi, =0 1, 2. ... s 11lustrated by the
j:l J j::l J
dashed line in Figure 4 and is obviously convex. Since ait(xit) = pitxit

the cost functions satisfy all the assumptions for (I) and the network
model is applicable.

Upper and lower bounds on the inventory level of any product i in period
t can be incorporated into the model by putting the appropriate lower and

t-1
upper bounds on the arc corresponding to Z X Hence, the inventory

j=1
levels of each product at the end of the planning horizon can either be
fixed at specified values by setting the corresponding lower and upper
bounds equal to each other, or allowed to fluctuate between specified bounds.

Under the same assumptions as above but with all demand assumed to occur

at the end of a period the inventory/backorder cost becomes

A
o

r—
b for Iit <

itIit

\%
<

Sietye TOT g, 2
and the assumptions for (I) are again satisfied.
Under the same assumptions as above but with both production and demand

assumed to occur at a constant rate and backorders not allowed the inventory

cost in period t is

(Tyes *X30) = ¢5elye = ¢5e (g = 83%,)/2

t-1 t-1
e I %y - jzldij) = ey (dye = 8yxg /2

T

- e
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Figure 4: Cost Curve as a Function of Beginning Period Inventory
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By letting

a3e (X)) = PyeXye ~ Cqe(dyy = 85%4,)/2
and
til til til
g C P x. Y= e () x. - d..)
& &
i re ij 1t 1 el 1]

we again have all the assumptions for (I) satisfied and the model applies.

If the inventory level for this latter problem is allowed to be negative
(i.e., backorders allowed) as well as positive, the nonlinear cost component
corresponding to the case where both positive and negative inventory levels
occur in the same period t contains both Xie and Iit' Since there is no
apparent way to separate this component into a function of Xie and a function

of , this problem appears appreciably more difficulty than the others

Iit

considered here.
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